Dual concepts of almost distance-regularity and the spectral excess theorem
نویسندگان
چکیده
Generally speaking, ‘almost distance-regular’ graphs share some, but not necessarily all, of the regularity properties that characterize distance-regular graphs. In this paper we propose two new dual concepts of almost distance-regularity, thus giving a better understanding of the properties of distance-regular graphs. More precisely, we characterize m-partially distance-regular graphs and j-punctually eigenspace distance-regular graphs by using their spectra. Our results can also be seen as a generalization of the so-called spectral excess theorem for distance-regular graphs, and they lead to a dual version of it.
منابع مشابه
ar X iv : 1 20 2 . 32 65 v 1 [ m at h . C O ] 1 5 Fe b 20 12 On Almost Distance - Regular Graphs ∗
Distance-regular graphs are a key concept in Algebraic Combinatorics and have given rise to several generalizations, such as association schemes. Motivated by spectral and other algebraic characterizations of distance-regular graphs, we study ‘almost distance-regular graphs’. We use this name informally for graphs that share some regularity properties that are related to distance in the graph. ...
متن کاملOn almost distance-regular graphs
Distance-regular graphs have been a key concept in Algebraic Combinatorics and have given place to several generalizations, such as association schemes. Motivated by spectral and other algebraic characterizations of distance-regular graphs, we study ‘almost distance-regular graphs’. We use this name informally for graphs that share some regularity properties that are related to distance in the ...
متن کاملThe Spectral Excess Theorem for Distance-Regular Graphs: A Global (Over)view
Distance-regularity of a graph is in general not determined by the spectrum of the graph. The spectral excess theorem states that a connected regular graph is distance-regular if for every vertex, the number of vertices at extremal distance (the excess) equals some given expression in terms of the spectrum of the graph. This result was proved by Fiol and Garriga [From local adjacency polynomial...
متن کاملAn excess theorem for spherical 2-designs
We give an excess theorem for spherical 2-designs. This theorem is a dual version of the spectral excess theorem for graphs, which gives a characterization of distance-regular graphs, among regular graphs in terms of the eigenvalues and the excess. Here we give a characterization of Q-polynomial association schemes among spherical 2-designs.
متن کاملEdge-distance-regular graphs
Edge-distance-regularity is a concept recently introduced by the authors which is similar to that of distance-regularity, but now the graph is seen from each of its edges instead of from its vertices. More precisely, a graph Γ with adjacency matrix A is edge-distance-regular when it is distance-regular around each of its edges and with the same intersection numbers for any edge taken as a root....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 312 شماره
صفحات -
تاریخ انتشار 2012